

PUBLIC

Deployment Verification

of the Spark Lend

Smart Contracts

April 26, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Methodology 5

4 Limitations and use of report 7

5 Deployment Validation 8

6 Appendix 16

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help MakerDAO with the validation of the Spark Lend deployment. Our
executive summary provides an overview of subjects covered in our validation of the Spark Lend
deployment according to Scope to support you in forming an opinion on deviations from the Aave V3
Ethereum mainnet deployment.

Spark Lend is a fork of the Aave V3 codebase with two additional contracts not present in Aave.

The subjects covered in this report are validation of the deployed bytecode against the Aave V3
Ethereum mainnet deployment and validation of the configuration.

To summarize, our findings indicate that the codebase closely matches that of Aave V3, but not
completely, and that there are some partial differences in the configurations. In Findings Overview, you
can find a summary of the main differences found.

It is important to note that deployment validations are time-boxed and cannot uncover all inconsistencies.
Further, it is important to note that it does not include a security assessment of the code base or the
parameters selected. It is complementary but does not replace other vital measures to secure a project.

The following sections will give an overview of our methodology and our findings. We are happy to
receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Findings Overview
This section summarizes the differences found between the Aave V3 (Ethereum mainnet) and the Spark
Lend deployments. For further details see Deployment Validation.

Generally, all the protocol addresses are set as state variables or immutables mismatch so that contracts
interact correctly with each other. The only address that has received privileged roles (besides the ones
that are given to protocol addresses) is MakerDAO's DSPauseProxy. Some special roles are not given
out which are given out by Aave (e.g. flash borrower, bridge).

However, note that there is a mismatch between Aave and Spark Lend in terms of role assignments and
contract deployment. Namely,, Aave deployed the RewardsController through the pool address
provider's setAddressAsProxy function while Spark Lend deployed it independently. However,
setAddress was not used for Spark Lend and hence the address provider of Spark Lend does not store
the address of the Rewards Controller. Further, the owner of the contract for Aave was set to the address
provider while the owner in Spark Lend was set to MakerDAO's DSPauseProxy. Additionally, distinct
proxy contracts are used. Aave uses the InitializableAdminUpgradeabilityProxy while Spark Lend uses
the InitializableAdminUpgradeabilityProxy.

The IDs of the address providers in the corresponding address provider registry mismatch. Namely,
Spark Lend uses ID 1 while Aave uses 30. Additionally, the names set in the address provider mismatch.
More specifically, Spark Lend's market is named "Spark Protocol" while Aave's is "Aave Ethereum
Market".

The pool contracts have differences in the reserve configurations. See the corresponding Pool section.
The flashloan fees are set to 0 for Spark Lend (while Aave takes fees). While both have only one EMode
category for the same assets, the categories are named differently.

In the Spark Lend tokens, the incentives controllers are set to the zero address while in Aave they are set
to the address of Aave's rewards controller. Additionally, a separate DAI treasury is used on Spark Lend.

The interest rate strategies match the Aave repository and some of the deployed Aave's interest rate
strategies in bytecode. See Interest Rate Strategies for differences in the parameters chosen.
Additionally, there is a special strategy for DAI (DaiInterestRateStrategy) that is not present in Aave.
However, it mismatches the Spark Lend repository. Note that another DaiInterestRateStrategy has been
deployed that matches the bytecode. However, that one needs to be set by MakerDAO who holds the
required permissions to do so.

The price sources match mostly with the Aave ones except for the USDC where Aave uses ChainLink
and Spark Lend uses a MockAggregator returning 1. Additionally, there is a special oracle used as a
price source for sDAI that matches the bytecode compiled from the repository.

The treasury manager and the treasury implementation mismatch the Aave ones. Distinct contracts are
used. However, Spark Lend uses the contracts present in the repository while Aave has special
contracts. Further, the proxy contracts of the treasury contracts mismatch with Aave (potentially due to
differences in the compiler version). Additionally, Spark Lend has two treasury addresses, one for DAI
and one for the remaining tokens.

Spark Lend's UI Pool Data Provider and UI Incentive Data Provider mismatch the Aave deployment in
bytecode but match the repository.

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the deployed contracts documented inside the Spark Lend repository
and is based on the documentation of Aave v3's deployed contracts on Ethereum Mainnet. The table
below indicates the code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1
03 April 2023 d105126e34c7453cf3820ebfbda2db057a1a580e Spark Lend Deployment

2
24 April 2023 a20c60f83b8b35b18dd3bcba10678f7b5b3005b8 Vat liveness for DAI IRS

For the solidity smart contracts, the compiler version 0.8.10 was chosen and hence was used for
validating the deployments of code not present in Aave.

The values values retrieved on-chain were retrieved from Aave and Spark Lend in the time between
03.04.2023 and 16.03.2023.

The contracts in scope are explicitly listed throughout section Deployment Validation in the according
subsections. Appendix: Token-Specific Addresses lists all token-specific addresses. The addresses
validated in scope of the Spark Lend deployment are the ATokens, the debt tokens and interest rate
strategies.

2.1.1 Excluded from scope
The security and the selection of economic parameters are out of scope. Additionally, Aave is expected
to be properly set up. Further, we assume that Aave's documentation reflects the deployed contracts
correctly and that MakerDAO's Chainlog returns the addresses correctly.

3 Methodology
The validation of Spark Lend's deployment included validating the bytecode and the protocol's setup.

For bytecode validation, we validated whether the bytecodes fully match, match with differences in
immutables, or mismatch. To achieve this, we locally compiled the source file and compared it to both
creation codes. If the creation code matched the compiler-generated creation code, a match is detected
and otherwise a mismatch. To distinguish a full match and a match with differences in immutables, the
source code was manually analyzed and constructor arguments were extracted and compared.

The validation of the setup included comparing the end-state of the configurations and investigating the
traces of the Spark Lend contracts. Investigating the traces included manual verification of the functions
called. Additionally, we compared whether the deployment methods matched how the Aave v3 contracts
had been deployed. Validating the end state included extracting the configuration parameters and
comparing them.

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

4 Limitations and use of report
Deployment assessments cannot uncover all existing mismatches; even an assessment in which no
mismatches are found is not a guarantee of a correct setup. However, deployment assessments enable
the discovery of unintended mismatches that were overlooked during development and areas where
additional security measures are necessary. This is why we carry out a deployment validation aimed at
determining all locations that mismatch the intended deployment. Within the customer-determined time
frame, ChainSecurity has performed an assessment in order to discover as many inconsistencies as
possible.

The focus of our assessment was limited to the contracts defined in the engagement letter. We assessed
whether the project follows a similar deployment procedure as Aave V3 on Ethereum Mainnet. We draw
attention to the fact that due to inherent limitations in any software development process and software
product, an inherent risk exists that even major failures or malfunctions can remain undetected. Further
uncertainties exist in any software product or application used during the development, which itself
cannot be free from any error or failures. These preconditions can have an impact on the system and/or
functions and/or operation. We did not assess the underlying third-party infrastructure which adds further
inherent risks as we rely on the correct execution of the included third-party technology stack itself.
Report readers should also take into account that over the life cycle of any software, changes to the
product itself or to the environment in which it is operated can have an impact leading to operational
behaviors other than those initially determined in the business specification. Further, they should be
aware that no security assessment was performed.

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

5 Deployment Validation

5.1 Pool Address Provider Registry
The pool address provider registry (PoolAddressProviderRegistry) addresses are:

• Aave: 0xbaA999AC55EAce41CcAE355c77809e68Bb345170

• Spark Lend: 0x03cFa0C4622FF84E50E75062683F44c9587e6Cc1

The pool address provider registry bytecodes match.

The only constructor parameter owner sets state variables in the constructor. Initially set to
0xb90594ea5128a8178e132286dc2b7fbac7d7266c (EOA) for Aave. Initially, it is set to
0xd1236a6a111879d9862f8374ba15344b6b233fbd (EOA) for Spark Lend.

For Spark Lend, the EOA has registered an address provider at address
0x02C3eA4e34C0cBd694D2adFa2c690EECbC1793eE (see Pool Address Provider) with ID 1. Note
that for Aave, the id of the market is 30. Afterward, ownership has been transferred to MakerDAO's
DSPauseProxy.

5.2 Pool Address Provider
The pool address provider (PoolAddressProvider) addresses are:

• Aave: 0x2f39d218133AFaB8F2B819B1066c7E434Ad94E9e

• Spark Lend: 0x02C3eA4e34C0cBd694D2adFa2c690EECbC1793eE

The pool address provider bytecodes match.

The following parameters set state variables in the constructor:

• marketId: Initially set to "0" for Aave, then set to "Aave Ethereum Market". Initially set to "Spark
Protocol" for Spark Lend.

• owner: Initially set to 0xb90594ea5128a8178e132286dc2b7fbac7d7266c (EOA) for Aave.
Initially set to 0xd1236a6a111879d9862f8374ba15344b6b233fbd (EOA) for Spark Lend.

The traces show that MakerDAO's DSPauseProxy is the final owner and final ACL admin. The remaining
calls set and deploy the data provider, the configurator, the ACL manager, and the price oracle.

For Aave, the pool address provider deploys the RewardsController
(0x8164Cc65827dcFe994AB23944CBC90e0aa80bFcb) through the function setAddressAsProxy.
The admin of the RewardsController (being able to upgrade the implementation) is the pool address
provider. The pool address provider stores the address of the RewardsController in the internal
_addresses mapping at location
0x703c2c8634bed68d98c029c18f310e7f7ec0e5d6342c590190b3cb8b3ba54532 which is
keccak256("INCENTIVES_CONTROLLER"). For Spark Lend, the RewardsController
(0x4370D3b6C9588E02ce9D22e684387859c7Ff5b34) is deployed independently of the pool
address provider. On Spark Lend setAddress is not called to set the address of the reward manager for
id 0x703c2c8634bed68d98c029c18f310e7f7ec0e5d6342c590190b3cb8b3ba54532. The pool
address provider therefore cannot be queried to obtain the RewardsController address on Spark Lend.

5.3 Pool
The Pool (Pool) contracts are upgradeable contracts (InitializableImmutableAdminUpgradeabilityProxy).
The addresses of the proxies are:

• Aave: 0x87870Bca3F3fD6335C3F4ce8392D69350B4fA4E2

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

• Spark Lend: 0xC13e21B648A5Ee794902342038FF3aDAB66BE987

The pool proxy is deployed as in Aave using the PoolAddressProvider.setImpl function, setting
the implementation contract to 0x62da45546a0f87b23941ffe5ca22f9d2a8fa7df3 (see below).
That additionally initializes the proxy contract. The only constructor parameter admin sets the admin
contract as immutable (owner). Hence, the bytecodes match with differences in the immutables. The
difference in immutables is due to the protocols setting the corresponding address provider contract.

The implementation addresses are:

• Aave: 0xfCc00A1e250644d89AF0df661bC6f04891E21585

• Spark Lend: 0x62DA45546A0F87b23941FFE5CA22f9D2A8fa7DF3

The bytecodes match with differences in the immutables. The only constructor parameter
addressProvider sets the addressProvider contract as an immutable. They are distinct since both set the
corresponding pool address provider contract. As in Aave, the implementation contract has been
initialized.

The post-construction (call-only) traces are a sequence of configuration calls by the configurator
(initReserve, setConfiguration, configEModeCategory. updateFlashloanPremiums)
followed by regular pool operations (supply, withdraw, borrow, liquidationCall). Note that these
occurred after the pool configurator had been set up. Further, note that the implementation contract has a
call to its initializer as is common for Aave contracts.

The reserves (lending pools) are initialized on Spark Lend for the following assets:

• WETH (0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2)

• WBTC (0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599)

• DAI (0x6B175474E89094C44Da98b954EedeAC495271d0F)

• WstETH (0x7f39C581F595B53c5cb19bD0b3f8dA6c935E2Ca0)

• USDC (0x7f39C581F595B53c5cb19bD0b3f8dA6c935E2Ca0)

• sDAI (0x83F20F44975D03b1b09e64809B757c47f942BEeA)

The configuration parameters for the above assets are compared with the corresponding reserves on
Aave (except sDAI which is unique to Spark Lend). The table in Appendix: Reserve Configuration shows
the difference in parameters. Notably, USDC is not active in Spark Lend, as shown by the loan-to-value
of 0 and borrowing being disabled. Other differences in parameters exist, which should be verified by the
protocol administrators to mirror the desired specification.

The two global parameters of the pool FLASHLOAN_PREMIUM_TOTAL and
FLASHLOAN_PREMIUM_TO_PROTOCOL differ between the Aave and Spark Lend deployment. Namely,
Aave has set FLASHLOAN_PREMIUM_TOTAL and FLASHLOAN_PREMIUM_TO_PROTOCOL to 5 and 4
respectively while Spark Lend has set both to 0 (no flash loan fees)

The EMode parameters, which are configured for ETH-correlated assets (WETH and wstETH), match
between Aave and Sparknet deployments with the only difference being the category name (ETH for
Spark Lend and ETH correlated for Aave).

5.4 Pool Configurator
The Pool Configurator (PoolConfigurator) contracts are upgradeable contracts
(InitializableImmutableAdminUpgradeabilityProxy). The addresses of the proxies are:

• Aave: 0x64b761D848206f447Fe2dd461b0c635Ec39EbB27

• Spark Lend: 0x542DBa469bdE58FAeE189ffB60C6b49CE60E0738

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

The bytecodes match with differences in the immutables. The only constructor parameter admin sets the
admin contract as an immutable (owner). They are distinct since both set the corresponding address
provider contract.

Note that the pool configurator proxy is deployed as in Aave using the
PoolAddressProvider. setPoolConfiguratorImpl function, setting the implementation contract
to 0xF7b656C95420194b79687fc86D965FB51DA4799F (see below). That additionally initializes the
proxy contract.

The implementation addresses are:

• Aave: 0xFDA7ffA872bDc906D43079EA134ebC9a511db0c2

• Spark Lend: 0xF7b656C95420194b79687fc86D965FB51DA4799F

The bytecodes match. As in Aave, the implementation contract has been initialized.

The post-construction (call-only) traces are a sequence of configuration operations (initReserves,
updateFlashloanPremiumTotal, setEModeCategory, setReserveBorrowing,
configureReserveAsCollateral, setReserveFactor, setAssetEModeCategory,
setReserveFlashLoaning, setLiquidationProtocolFee, setBorrowCap, setSupplyCap)
that interact with the pool. Note that these occurred after the pool had been set up and that the effects on
the configuration setup of the operations are further elaborated on in Pool.

5.5 Tokens
The AToken and debt token contracts are upgradeable contracts behind the
InitializableImmutableAdminUpgradeabilityProxy. See Appendix: Token-Specific Addresses for the
addresses of the protocol-specific tokens (ATokens and debt tokens) supported by Spark Lend and Aave
(excluding assets only present in Aave).

The deployment of tokens (ATokens, variableDebtTokens, and stableDebtTokens) is performed in a call
by the function PoolConfigurator.initReserves. The proxy's constructor takes an admin
argument, which the configurator sets to itself as the immutable admin in the proxy. Thus, the bytecodes
match with a difference in the immutable variable. After the tokens are deployed, the pool configurator
initializes the parameters of the tokens through the initialize function.

Overall deployment of tokens (and initialization of reserves) differ between Aave and Spark Lend. In
Aave, every reserve is initialized by a dedicated transaction, which both deploys the tokens and sets the
pool parameters for the reserve. In Spark Lend, the six reserves are initialized in a single transaction,
which deploys the tokens. Individual transactions are then used to configure the reserve parameters in
the Pool.

The tokens are registered as tokens for a reserve through Pool.initReserve(), which only the
PoolConfigurator can call (called with initReserves). For Spark Lend, the address of the tokens
configured in the pool match the upgradable tokens deployed by the PoolConfigurator.

The implementation addresses are:

• AToken:

• Aave: 0x7EfFD7b47Bfd17e52fB7559d3f924201b9DbfF3d

• Spark Lend: 0x6175ddEc3B9b38c88157C10A01ed4A3fa8639cC6

• VariableDebtTokens:

• Aave: 0xaC725CB59D16C81061BDeA61041a8A5e73DA9EC6

• Spark Lend: 0x86C71796CcDB31c3997F8Ec5C2E3dB3e9e40b985

• StableDebtTokens:

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

• Aave: 0x15C5620dfFaC7c7366EED66C20Ad222DDbB1eD57

• Spark Lend: 0x026a5B6114431d8F3eF2fA0E1B2EDdDccA9c540E

The bytecodes match with differences in the immutables. The constructor takes the corresponding pool's
address as an argument which is set as an immutable in all implementations.

The token parameters are correctly configured. As a difference between Aave and Spark Lend, in the
Spark Lend tokens the incentives controllers are set to the zero address, in Aave it is set to the address
of the RewardsController. Additionally, a separate DAI treasury is used on Spark Lend, see Treasury &
DAI Treasury. The name of the tokens differ between Aave and Spark Lend to show that they belong to
Spark Lend or Aave.

5.6 Interest Rate Strategies
Please see Appendix: Token-Specific Addresses for the addresses of the interest rate strategies for each
token supported by Spark Lend and Aave (excluding assets only present in Aave).

All Aave Interest Rate Strategies are DefaultReserveInterestRateStrategy. Similarly, this holds for all
Spark Lend Interest Rate Strategies except for the DAI interest rate strategy which is a custom interest
rate strategy DaiInterestRateStrategy for integration with D3Ms.

All Spark Lend interest rate strategies match the bytecode derived from the repository at the commit.
Similarly, this holds for the Aave ones with the exceptions of WETH and wstETH ones. A potential reason
for the mismatch in the Aave code is that a different compiler version is used (0.8.17 instead of
0.8.10).

Hence, all the non-exceptional interest rate strategies match with differences in immutables. Namely, all
parameters are set as immutables. The provider provider corresponds to the Aave's and Spark Lend's
pool address provider contracts, see Pool Address Provider.

See Appendix: Default Interest Rate Strategy Configuration for details about the economic parameters of
the interest rate strategies for Aave and Spark Lend. Most notably, parameters related to stable
borrowing are set to 0 for Spark Lend which is different from Aave's setup. Another example of a
difference is that the reserve rate of Spark Lend for DAI is set to 100%.

The DaiInterestRateStrategy in the repository for DAI mismatches the bytecode compiled locally, due to
some differences in the source file. The constructor arguments set the immutable variables of the interest
rate strategy. The following parameters are set in the constructor:

• _vat: MakerDAO's Vat address

• _pot: MakerDAO's Pot address

• _ilk: bytes32 representation of DIRECT-SPARK-DAI (hence, right padded with zeros)

• _baseRateConversion: 1111111111111111111111111111

• _borrowSpread: 0

• _supplySpread: 0

• _maxRate: 750000000000000000000000000

• _performanceBonus: 100000000000000000000000000

5.6.1 DAI Interest Rate Strategy V2

Version 2

A new DAI Interest Rate Strategy has been deployed on April 21st. Note that it could not be replaced by
the Spark Lend team due to the permissions being held by MakerDAO. The contract at address
0x113dc45c524404f91dcbbabb103506babc8df0fe matches the locally compiled bytedcode at the
commit of . The constructor arguments set the immutable variables of the interest rate strategy.
The following parameters are set in the constructor:

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

• _vat: MakerDAO's Vat address

• _pot: MakerDAO's Pot address

• _ilk: bytes32 representation of DIRECT-SPARK-DAI (hence, right padded with zeros)

• _baseRateConversion: 1111111111111111111111111111

• _borrowSpread: 0

• _supplySpread: 0

• _maxRate: 750000000000000000000000000

• _performanceBonus: 0

Note that only the performance bonus, in comparison with the first version, has been set to zero.

5.7 ACLManager
The ACL Manager contract (ACLManager) addresses are:

• Aave: 0xc2aaCf6553D20d1e9d78E365AAba8032af9c85b0

• Spark Lend: 0xdA135Cd78A086025BcdC87B038a1C462032b510C

The bytecodes match with differences in immutables. The only constructor parameter provider sets the
provider contract as an immutable, see Pool Address Provider. They are distinct since both set the
corresponding pool address provider contract.

Note that the constructor sets up the default role admin role as the ACL admin set in the pool address
provider.

The traces of the contract indicate that the initial role admin set is an EOA that then

1. gives pool, emergency, and role admin rights to MakerDAO's DSPauseProxy,

2. and then revokes all of its permissions.

Ultimately, the result is that MakerDAO is given all permissions.

Note that Aave has given roles to other parties and has also assigned roles that Spark Lend has not
assigned yet (e.g. flash borrower, bridge).

5.8 Oracle
The oracle contract (AaveOracle) addresses are:

• Aave: 0x54586bE62E3c3580375aE3723C145253060Ca0C2

• Spark Lend: 0x8105f69D9C41644c6A0803fDA7D03Aa70996cFD9

The bytecodes match with differences in immutables. The following constructor parameters set
immutables:

• provider: Set to the corresponding pool address provider, see Pool Address Provider.

• baseCurrency: Set to 0x00 for both.

• baseCurrencyUnit: Set to 100000000 for both.

The fallbackOracle constructor parameter sets the fallback oracle. Both set this initially to
0x00. Note that the fallback oracle for both has not
been set afterward.

The assets and sources array constructor parameters set asset-to-source mappings. The addresses are
presented in the table in Appendix: Token-Specific Addresses. For the assets present in both Aave and

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Spark Lend, the price feeds used are the same except for USDC price source. Spark Lend uses a
MockAggregator returning 1 while Aave uses a Chainlink price feed.

The oracle for sDAI is a contract that has no equivalent in Aave. However, the bytecode matches the
repository. The constructor arguments set the DAI price feed to the price feed to which DAI is mapped
(0xAed0c38402a5d19df6E4c03F4E2DceD6e29c1ee9) and to MakerDAO's Pot contract.

No state-changing traces can be found after the deployment of Spark Lend. Hence, the setup on
construction remains.

5.9 Incentives

5.9.1 Emission Manager
The Emission Manager (EmissionManager) addresses are:

• Aave: 0x223d844fc4B006D67c0cDbd39371A9F73f69d974

• Spark Lend: 0xf09e48dd4CA8e76F63a57ADd428bB06fee7932a4

The bytecodes match.

The only constructor parameter owner sets the owner:

• Aave: Sets it initially to: 0xb90594ea5128a8178e132286dc2b7fbac7d7266c (EOA)

• Spark Lend: Sets it initially to: 0xd1236a6a111879d9862f8374ba15344b6b233fbd (EOA)

The traces show that the rewards controller is set to the corresponding rewards controller address, see
Rewards Controller and that ownership is transferred to MakerDAO's DSPauseProxy.

5.9.2 Rewards Controller
The Rewards Controllers (RewardsController) are upgradeable contracts. The addresses of the proxies
are:

• Aave: 0x8164Cc65827dcFe994AB23944CBC90e0aa80bFcb

• Spark Lend: 0x4370D3b6C9588E02ce9D22e684387859c7Ff5b34

The bytecodes mismatch. Two distinct proxy files are used:

• Aave: InitializableImmutableAdminUpgradeabilityProxy

• Spark Lend: InitializableAdminUpgradeabilityProxy

The main difference is that the Spark Lend proxy contract does not have an immutable owner.

On initialization, the owner of the Spark Lend proxy is set to MakerDAO's DSPauseProxy. The owner of
the Aave proxy is the PoolAddressProvider and is set on construction. As mentioned in the Pool Address
Provider section, in Aave the address of the RewardsController is registered in the pool address provider
upon deployment, the same is not performed in Spark Lend. Additionally, the initialization sets the
implementation contract (see below).

The implementation addresses are:

• Aave: 0xE7B67F44eA304DD7f6d215b13686637ff64CD2B2

• Spark Lend: 0x0ee554F6A1f7a4Cb4f82D4C124DdC2AD3E37fde1

The bytecodes match with differences in the immutables. The only constructor parameter
emissionManager sets the emission manager contract as an immutable. They are distinct since both
set the corresponding emission manager contract, see Emission Manager.

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5.10 Treasury Manager
The Treasury Manager addresses are:

• Aave: 0x3d569673dAa0575c936c7c67c4E6AedA69CC630C

• Spark Lend: 0x92eF091C5a1E01b3CE1ba0D0150C84412d818F7a

The bytecodes mismatch since Spark Lend uses a treasury contract different from Aave V3. For Spark
Lend, the CollectorController contract from the repository is used. The bytecode matches the contract in
the repository. The owner is a variable that is initially set to MakerDAO's DSPauseProxy.

No further traces can be found for the treasury manager. Given the state-changing functions, that is
expected.

5.11 Treasury & DAI Treasury
The Treasury contracts are upgradeable. The addresses of the proxies are:

• Aave: 0x464C71f6c2F760DdA6093dCB91C24c39e5d6e18c

• Spark Lend: 0xb137E7d16564c81ae2b0C8ee6B55De81dd46ECe5

A difference is that Spark Lend has two treasury addresses. Additionally, there is the DAI treasury at
address 0x856900aa78e856a5df1a2665eE3a66b2487cD68f.

The bytecode of the Spark Lend contracts matches. They do not match the bytecode of the Aave
contract. However, the names of the contracts match. Note that differences could be in the compiler
version. However, the Spark Lend version matches the Aave V3 repository.

Both proxies are only initialized so that the implementation is set (see below) and so that the treasury
manager (see Treasury Manager) is set. No other calls are made to the contract. Given the
state-changing functions, that is expected.

The implementation addresses are:

• Aave: 0x1aa435ed226014407Fa6b889e9d06c02B1a12AF3

• Spark Lend: 0xF1E57711Eb5F897b415de1aEFCB64d9BAe58D312

Note that the Spark Lend treasuries share the same implementation contract. The bytecodes mismatch
the Aave one. Note that distinct contracts are used. However, the Spark Lend implementation contract's
bytecode matches the Aave v3 repository (Collector).

Similar to the common practice in Aave, the implementation contract is initialized.

5.12 Protocol Data Provider
The Protocol Pool Data Provider (AaveProtocolDataProvider) addresses are:

• Aave: 0x7B4EB56E7CD4b454BA8ff71E4518426369a138a3

• Spark Lend: 0xFc21d6d146E6086B8359705C8b28512a983db0cb

The bytecodes match with differences in the immutables. The only constructor parameter
addressProvider sets the addressProvider contract as an immutable. They are distinct since both set the
corresponding address provider contract. Given that there are no state-changing functions, the setup of
the contract does not require any additional checks.

5.13 Wallet Balance Provider
The Wallet Balance Provider (WalletBalanceProvider) addresses are:

• Aave: 0xC7be5307ba715ce89b152f3Df0658295b3dbA8E2

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

• Spark Lend: 0xd2AeF86F51F92E8e49F42454c287AE4879D1BeDc

The bytecodes match. The constructor has no arguments. Given that there are no state-changing
functions, the setup of the contract does not require any additional checks.

5.14 UI Pool Data Provider
The UI Pool Data Provider (UiPoolDataProviderV3) addresses are:

• Aave: 0x91c0eA31b49B69Ea18607702c5d9aC360bf3dE7d

• Spark Lend: 0xF028c2F4b19898718fD0F77b9b881CbfdAa5e8Bb

The bytecodes mismatch. Spark Lend has deployed the contract at the commit of the repository while
Aave has not.

The constructor arguments are equal and are set for both Aave and Spark Lend to
0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419 (see ETH / USD | Chainlink). Given that there
are no state-changing functions, the setup of the contract does not require any additional checks.

5.15 UI Incentive Data Provider
The UI Incentive Data Provider (UiIncentiveDataProviderV3) addresses are:

• Aave: 0x162A7AC02f547ad796CA549f757e2b8d1D9b10a6

• Spark Lend: 0xA7F8A757C4f7696c015B595F51B2901AC0121B18

The bytecodes mismatch. Spark Lend has deployed the contract at the commit of the repository while
Aave has not. The constructor has no arguments. Given that there are no state-changing functions, the
setup of the contract does not require any additional checks.

5.16 WETH Gateway
The WETH Gateway (WrappedTokenGatewayV3) addresses are:

• Aave: 0xD322A49006FC828F9B5B37Ab215F99B4E5caB19C

• Spark Lend: 0xBD7D6a9ad7865463DE44B05F04559f65e3B11704

The bytecodes match with differences in the immutables. The following constructor parameters set
immutables:

• weth: Equal. Set to the WETH9 address (0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2).

• pool: Distinct. Set to the corresponding pool address.

The following parameters set state variables in the constructor:

• owner: The initial owner for Spark Lend is the DSPauseProxy
(0xbe8e3e3618f7474f8cb1d074a26affef007e98fb). The initial owner for Aave is an EOA
(0xb90594ea5128a8178e132286dc2b7fbac7d7266c).

Given that the WETH Gateway contract's functions integrate with the core or can only be called by the
owner, the setup of the contract does not require any additional checks.

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6 Appendix

6.1 Appendix: Token-Specific Addresses
token domain

aTokenAddress stableDebtTokenAddress
DAI AAVE 0x018008bfb33d285247A21d44E50697654f75

4e63
0x413AdaC9E2Ef8683ADf5DDAEce8f19613d60
D1bb

SPARK 0x4DEDf26112B3Ec8eC46e7E31EA5e123490B0
5B8B

0xfe2B7a7F4cC0Fb76f7Fc1C6518D586F1e4559
176

USDC AAVE 0x98C23E9d8f34FEFb1B7BD6a91B7FF122F4e1
6F5c

0xB0fe3D292f4bd50De902Ba5bDF120Ad66E9d
7a39

SPARK 0x377C3bd93f2a2984E1E7bE6A5C22c525eD4A
4815

0x887Ac022983Ff083AEb623923789052A955C
6798

WBTC AAVE 0x5Ee5bf7ae06D1Be5997A1A72006FE6C607eC
6DE8

0xA1773F1ccF6DB192Ad8FE826D15fe1d328B0
3284

SPARK 0x4197ba364AE6698015AE5c1468f540876027
15b2

0x4b29e6cBeE62935CfC92efcB3839eD2c2F35C
1d9

WETH AAVE 0x4d5F47FA6A74757f35C14fD3a6Ef8E3C9BC51
4E8

0x102633152313C81cD80419b6EcF66d14Ad68
949A

SPARK 0x59cD1C87501baa753d0B5B5Ab5D8416A45c
D71DB

0x3c6b93D38ffA15ea995D1BC950d5D0Fa6b22
bD05

sDAI AAVE
SPARK 0x78f897F0fE2d3B5690EbAe7f19862DEacedF1

0a7
0xEc6C6aBEd4DC03299EFf82Ac8A0A83643d3c
B335

wstETH AAVE 0x0B925eD163218f6662a35e0f0371Ac234f9E9
371

0x39739943199c0fBFe9E5f1B5B160cd73a64CB
85D

SPARK 0x12B54025C112Aa61fAce2CDB7118740875A5
66E9

0x9832D969a0c8662D98fFf334A4ba7FeE62b10
9C2

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

variableDebtTokenAddress interestRateStrategyAddress
DAI AAVE 0xcF8d0c70c850859266f5C338b38F9D663181

C314
0x694d4cFdaeE639239df949b6E24Ff8576A00d
1f2

SPARK 0xf705d2B7e92B3F38e6ae7afaDAA2fEE110fE5
914

0xfD0cc3F39d48a2393443e18E7d3758FC4c3c5
c37

USDC AAVE 0x72E95b8931767C79bA4EeE721354d6E99a61
D004

0xD6293edBB2E5E0687a79F01BEcd51A778d5
9D1c5

SPARK 0x7B70D04099CB9cfb1Db7B6820baDAfB4C5C
70A67

0x4d988568b5f0462B08d1F40bA1F5f17ad2D2
4F76

WBTC AAVE 0x40aAbEf1aa8f0eEc637E0E7d92fbfFB2F26A8b
7B

0x24701A6368Ff6D2874d6b8cDadd461552B8A
5283

SPARK 0xf6fEe3A8aC8040C3d6d81d9A4a168516Ec9B
51D2

0xf2812d7a07573322D4Db3C31239C837081D
8294E

WETH AAVE 0xeA51d7853EEFb32b6ee06b1C12E6dcCA88Be
0fFE

0x53F57eAAD604307889D87b747Fc67ea9DE4
30B01

SPARK 0x2e7576042566f8D6990e07A1B61Ad1efd86A
e70d

0x764b4AB9bCA18eB633d92368F725765Ebb8f
047C

sDAI AAVE
SPARK 0xaBc57081C04D921388240393ec4088Aa47c6

832B
0xeC4cf692c18E62159a39704Aa1Db82ca2306f
F90

wstETH AAVE 0xC96113eED8cAB59cD8A66813bCB0cEb29F0
6D2e4

0x7b8Fa4540246554e77FCFf140f9114de00F8b
B8D

SPARK 0xd5c3E3B566a42A6110513Ac7670C1a86D76E
13E6

0x0D56700c90a690D8795D6C148aCD94b1293
2f4E3

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6.2 Appendix: Reserve Configuration
token DAI USDC WBTC WETH sDAI wstETH

domain AAVE SPARK AAVE SPARK AAVE SPARK AAVE SPARK AAVE SPARK AAVE SPARK
id 4 0 3 2 2 5 0 3 1 1 4

unbacked 0 0 0 0 0 0 0 0 0 0 0
ltv 6400 7400 7400 0 7000 7000 8000 8000 7400 6850 6850
liq

threshold 7700 7600 7600 0 7500 7500 8250 8250 7600 7950 7950
liq bonus 10400 10450 10450 0 10625 10625 10500 10500 10450 10700 10700
decimals 18 18 6 6 8 8 18 18 18 18 18
is active TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
is frozen FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

borrowing
is enabled TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
stable rate
borrowing
is enabled

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
asset is
paused FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

borrowing
isolation

mode
enabled TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
reserved

bits 2 2 2 2 2 2 2 2 2 2 2
reserve
factor 1000 10000 1000 1000 2000 2000 1500 1500 1000 1500 1500

borrow cap
271000000 0 1.58E+09 0 28000 500 1400000 1400000 0 6000 3000

supply cap 338000000 0 1.76E+09 0 43000 1000 1800000 0 0 200000 200000
liquidation

protocol
fee 2000 2000 2000 0 1000 1000 1000 1000 2000 1000 1000

emode
category 0 0 0 0 0 0 1 1 0 1 1
unbacked
mint cap 0 0 0 0 0 0 0 0 0 0 0

debt ceiling
isolation

mode
0 0 0 0 0 0 0 0 0 0 0

unused 0 0 0 0 0 0 0 0 0 0 0

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6.3 Appendix: Default Interest Rate Strategy
Configuration

token DAI USDC WBTC
domain AAVE AAVE SPARK AAVE SPARK

OPTIMAL_USAGE_RATIO 8E+26 9E+26 1E+27 4.5E+26 6.5E+26
getBaseVariableBorrowRate 0 0 1E+25 0 0

getVariableRateSlope1 4E+25 4E+25 0 7E+25 8E+25
getVariableRateSlope2 7.5E+26 6E+26 0 3E+27 3E+27

OPTIMAL_STABLE_TO_TOTAL_DEBT_RATIO2E+26 2E+26 0 2E+26 0
getStableRateSlope1 5E+24 5E+24 0 7E+25 0
getStableRateSlope2 7.5E+26 6E+26 0 3E+27 0

getBaseStableBorrowRate 5E+25 5E+25 0 9E+25 8E+25
getStableRateExcessOffset 8E+25 8E+25 0 5E+25 0

token WETH sDAI wstETH
domain AAVE SPARK SPARK AAVE SPARK

OPTIMAL_USAGE_RATIO 8E+26 8E+26 1E+27 4.5E+26 4.5E+26
getBaseVariableBorrowRate 1E+25 1E+25 1E+25 2.5E+24 2.5E+24

getVariableRateSlope1 3.8E+25 3.8E+25 0 4.5E+25 4.5E+25
getVariableRateSlope2 8E+26 8E+26 0 8E+26 8E+26

OPTIMAL_STABLE_TO_TOTAL_DEBT_RATIO2E+26 0 0 2E+26 0
getStableRateSlope1 4E+25 0 0 4E+25 0
getStableRateSlope2 8E+26 0 0 8E+26 0

getBaseStableBorrowRate 6.8E+25 3.8E+25 0 7.5E+25 4.5E+25
getStableRateExcessOffset 5E+25 0 0 5E+25 0

MakerDAO - Spark Lend - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Findings Overview

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 Methodology
	4 Limitations and use of report
	5 Deployment Validation
	5.1 Pool Address Provider Registry
	5.2 Pool Address Provider
	5.3 Pool
	5.4 Pool Configurator
	5.5 Tokens
	5.6 Interest Rate Strategies
	5.6.1 DAI Interest Rate Strategy V2

	5.7 ACLManager
	5.8 Oracle
	5.9 Incentives
	5.9.1 Emission Manager
	5.9.2 Rewards Controller

	5.10 Treasury Manager
	5.11 Treasury & DAI Treasury
	5.12 Protocol Data Provider
	5.13 Wallet Balance Provider
	5.14 UI Pool Data Provider
	5.15 UI Incentive Data Provider
	5.16 WETH Gateway

	6 Appendix
	6.1 Appendix: Token-Specific Addresses
	6.2 Appendix: Reserve Configuration
	6.3 Appendix: Default Interest Rate Strategy Configuration

